Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Vaccines (Basel) ; 11(3)2023 Mar 17.
Article in English | MEDLINE | ID: covidwho-2258772

ABSTRACT

This Review initiates a wide-ranging discussion over 2023 by selecting and exploring core themes to be investigated more deeply in papers submitted to the Vaccines Special Issue on the "Future of Epidemic and Pandemic Vaccines to Serve Global Public Health Needs". To tackle the SARS-CoV-2 pandemic, an acceleration of vaccine development across different technology platforms resulted in the emergency use authorization of multiple vaccines in less than a year. Despite this record speed, many limitations surfaced including unequal access to products and technologies, regulatory hurdles, restrictions on the flow of intellectual property needed to develop and manufacture vaccines, clinical trials challenges, development of vaccines that did not curtail or prevent transmission, unsustainable strategies for dealing with variants, and the distorted allocation of funding to favour dominant companies in affluent countries. Key to future epidemic and pandemic responses will be sustainable, global-public-health-driven vaccine development and manufacturing based on equitable access to platform technologies, decentralised and localised innovation, and multiple developers and manufacturers, especially in low- and middle-income countries (LMICs). There is talk of flexible, modular pandemic preparedness, of technology access pools based on non-exclusive global licensing agreements in exchange for fair compensation, of WHO-supported vaccine technology transfer hubs and spokes, and of the creation of vaccine prototypes ready for phase I/II trials, etc. However, all these concepts face extraordinary challenges shaped by current commercial incentives, the unwillingness of pharmaceutical companies and governments to share intellectual property and know-how, the precariousness of building capacity based solely on COVID-19 vaccines, the focus on large-scale manufacturing capacity rather than small-scale rapid-response innovation to stop outbreaks when and where they occur, and the inability of many resource-limited countries to afford next-generation vaccines for their national vaccine programmes. Once the current high subsidies are gone and interest has waned, sustaining vaccine innovation and manufacturing capability in interpandemic periods will require equitable access to vaccine innovation and manufacturing capabilities in all regions of the world based on many vaccines, not just "pandemic vaccines". Public and philanthropic investments will need to leverage enforceable commitments to share vaccines and critical technology so that countries everywhere can establish and scale up vaccine development and manufacturing capability. This will only happen if we question all prior assumptions and learn the lessons offered by the current pandemic. We invite submissions to the special issue, which we hope will help guide the world towards a global vaccine research, development, and manufacturing ecosystem that better balances and integrates scientific, clinical trial, regulatory, and commercial interests and puts global public health needs first.

2.
J Infect Dis ; 2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-1961057

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 1 (SARS-CoV-1) emerged 20 years ago presaging a series of subsequent infectious disease epidemics of international concern. The recent emergence of SARS-CoV-2 has underscored the importance of targeted preparedness research to enable rapid countermeasure development during a crisis. In December 2021 NIAID, building upon the successful strategies developed during the SARS-CoV-2 response and to prepare for future pandemics, published a pandemic preparedness plan that outlined a research strategy focused on priority pathogens, technology platforms, and prototype pathogens. To accelerate the discovery, development, and evaluation of medical countermeasures against new or previously unknown pathogens of pandemic potential, we present here a strategy of research directed at select prototype pathogens. In this manner, leveraging a prototype pathogen approach may serve as a powerful cornerstone in biomedical research preparedness to protect public health from newly emerging and re-emerging infectious diseases.

3.
Vaccine ; 40(20): 2833-2840, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-1805289

ABSTRACT

The animal-human interface has played a central role in advances made in vaccinology for the past two centuries. Many traditional veterinary vaccines were developed by growing, attenuating, inactivating and fractioning the pathogen of interest. While such approaches have been very successful, we have reached a point where they have largely been exhausted and alternative approaches are required. Furthermore, although subunit vaccines have enhanced safety profiles and created opportunities for combined discrimination between vaccinated and infected animal (DIVA) approaches, their functionality has largely been limited to diseases that can be controlled by humoral immunity until very recently. We now have a new generation of adjuvants and delivery systems that can elicit CD4 + T cells and/or CD8 +  T cell responses in addition to high-titre antibody responses. We review the current vaccine platform technologies, describe their roles in veterinary vaccinology and discuss how knowledge of their mode of action allows informed decisions on their deployment with wider benefits for One Health.


Subject(s)
One Health , Vaccinology , Adjuvants, Immunologic , Animals , Antibody Formation , Vaccines, Subunit
4.
Biologicals ; 76: 15-23, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1705225

ABSTRACT

The COVID-19 pandemic has brought into sharp focus the importance of strategies supporting vaccine development. During the pandemic, TRANSVAC, the European vaccine-research-infrastructure initiative, undertook an in-depth consultation of stakeholders to identify how best to position and sustain a European vaccine R&D infrastructure. The consultation included an online survey incorporating a gaps-and-needs analysis, follow-up interviews and focus-group meetings. Between October 2020 and June 2021, 53 organisations completed the online survey, including 24 research institutes and universities, and 9 pharmaceutical companies; 24 organisations participated in interviews, and 14 in focus-group meetings. The arising recommendations covered all aspects of the vaccine-development value chain: from preclinical development to financing and business development; and covered prophylactic and therapeutic vaccines, for both human and veterinary indications. Overall, the recommendations supported the expansion and elaboration of services including training programmes, and improved or more extensive access to expertise, technologies, partnerships, curated databases, and-data analysis tools. Funding and financing featured as critical elements requiring support throughout the vaccine-development programmes, notably for academics and small companies, and for vaccine programmes that address medical and veterinary needs without a great potential for commercial gain. Centralizing the access to these research infrastructures via a single on-line portal was considered advantageous.


Subject(s)
Biomedical Research , COVID-19 , Vaccines , COVID-19/prevention & control , Europe , Humans , Pandemics/prevention & control
5.
J Microbiol ; 60(3): 238-246, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1652456

ABSTRACT

Middle East Respiratory Syndrome coronavirus (MERS-CoV), a contagious zoonotic virus, causes severe respiratory infection with a case fatality rate of approximately 35% in humans. Intermittent sporadic cases in communities and healthcare facility outbreaks have continued to occur since its first identification in 2012. The World Health Organization has declared MERS-CoV a priority pathogen for worldwide research and vaccine development due to its epidemic potential and the insufficient countermeasures available. The Coalition for Epidemic Preparedness Innovations is supporting vaccine development against emerging diseases, including MERS-CoV, based on platform technologies using DNA, mRNA, viral vector, and protein subunit vaccines. In this paper, we review the usefulness and structure of a spike glycoprotein as a MERS-CoV vaccine candidate molecule, and provide an update on the status of MERS-CoV vaccine development. Vaccine candidates based on both DNA and viral vectors coding MERS-CoV spike gene have completed early phase clinical trials. A harmonized approach is required to assess the immunogenicity of various candidate vaccine platforms. Platform technologies accelerated COVID-19 vaccine development and can also be applied to developing vaccines against other emerging viral diseases.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Viral Vaccines , Antibodies, Viral , COVID-19 Vaccines , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Viral Vaccines/genetics
6.
AAPS Open ; 7(1): 6, 2021.
Article in English | MEDLINE | ID: covidwho-1553521

ABSTRACT

The Stability Community of the American Association of Pharmaceutical Scientists (AAPS) held a virtual workshop on "Vaccine Stability Considerations to Enable Rapid Development and Deployment", on March 24-25, 2021. The workshop included distinguished speakers and panelists from across the industry, academia, regulatory agencies, as well as health care leaders. This paper presents a review of the topics covered. Specifically the challenges in accelerating vaccine development and analytical characterization techniques to establish shelf-life were covered. Additionally, vaccine stability modeling using prior knowledge stability models and advanced kinetic analysis played a key in the EUA approaches discussed during the workshop. Finally, the role of stability studies in addressing the challenges of vaccine distribution and deployment during the pandemic were a focus of presentations and panel discussions. Although the workshop did not have any presentation topics directly dedicated to the mRNA vaccines, the techniques discussed are generally applicable. The mRNA vaccine developers were represented in the panel discussions, where experts involved in the EUA approval/deployment stages for this vaccine type could discuss the challenges as applied to their vaccines.

7.
Semin Immunol ; 50: 101413, 2020 08.
Article in English | MEDLINE | ID: covidwho-894220

ABSTRACT

The urgency to develop vaccines against Covid-19 is putting pressure on the long and expensive development timelines that are normally required for development of lifesaving vaccines. There is a unique opportunity to take advantage of new technologies, the smart and flexible design of clinical trials, and evolving regulatory science to speed up vaccine development against Covid-19 and transform vaccine development altogether.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Drug Approval , Systems Biology/methods , COVID-19/immunology , Humans , Machine Learning , Public Health/methods , SARS-CoV-2/immunology , Vaccinology/methods
SELECTION OF CITATIONS
SEARCH DETAIL